# IOWA STATE UNIVERSITY

# **Primer Server**

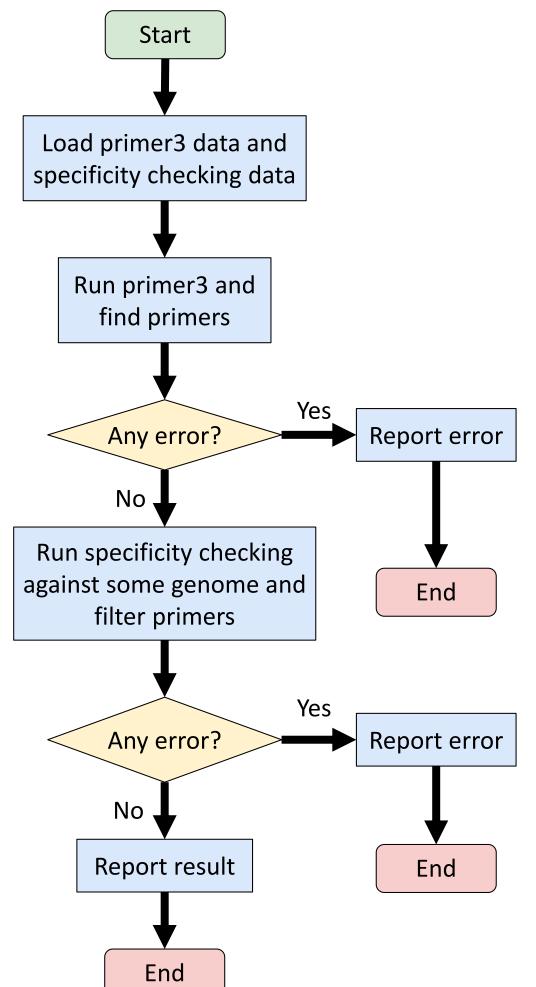
A web application to design primers for the amplification of unique DNA targets in complex genomes *Takao Shibamoto*<sup>1,3</sup>, Wimalanathan Kokulapalan<sup>2,3</sup>, Erica Unger-Wallace<sup>3</sup>, Erik Vollbrecht<sup>2,3</sup> <sup>1</sup>Computer Engineering, Iowa State University, Ames, IA 50011, <sup>2</sup>Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, <sup>3</sup>Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011

## Abstract

Polymerase Chain Reaction (PCR) is one of the most important inventions of the 20th century molecular biology. PCR is a technique to amplify or make in a test tube many copies of a speci region. Miniscule amounts of the genetic material from any organism can now be amplified to individuals, manipulate DNA, detect infectious organisms including the viruses that cause AID hepatitis, and tuberculosis, detect genetic variations including mutations in genes, and numer tasks.

PCR primers are short, single-stranded DNAs that define the section of DNA to be amplified. Two primers are used in each PCR reaction, designed so that they bind at flanking locations surrounding the target region. Critically, off-target binding may lead to experimental failure or worse, to misleading results. Thus, potential primers of approximately 20 DNA bases in length, must be examined for offtarget binding among, for example, the 3.2 billion DNA bases from all human chromosomes, the human genome.

The purpose of our study is to make a user-friendly tool (**Primer Server**) that can design PCR primers efficiently and accurately as well as visualize the designed primers. Our web-based bioinformatics tool selects optimal primer sequences within the starting material by using a C module called primer3 and then prioritizing and/or eliminating potential primers based on comparison of the primer bases against all bases in the genome using an algorithm called BLAST. This tool has an easy-touse interface which was designed using Angular2, and an efficient server-side code written in Python. While similar tools exist, our tool is more user-friendly, efficient and uses extensive form validation to minimize errors in the user input. Our tool can be used to design primers that will be used in laboratory experiments to amplify DNA from various organisms, including large, complex genomes such as humans, other animals and plants.


### Goals

Develop a user-friendly tool that can design PCR primers, filter non-specific primers, and visualize the specific primers

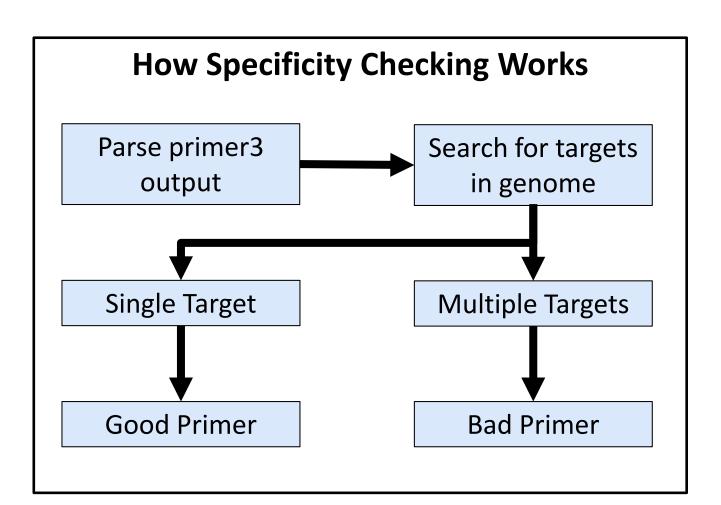
| Why | deve | lop | new | one? |
|-----|------|-----|-----|------|
|-----|------|-----|-----|------|

| Primer3<br>Plus | Primer-<br>BLAST                                                                                                             | Primer<br>Server          |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                 |                                                                                                                              |                           |
|                 |                                                                                                                              |                           |
| ×               | ×                                                                                                                            |                           |
| ×               | ×                                                                                                                            |                           |
| ×               | ×                                                                                                                            |                           |
| ×               |                                                                                                                              |                           |
| ×               | ×                                                                                                                            |                           |
|                 | ×                                                                                                                            |                           |
|                 | Plus   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓ | PlusBLAST✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓ |

### How to accurately find primers (primerDAFT)



**Figure 1:** Flow chart showing how the logic works


There are two main steps

1) Primer Design Step

The program runs primer3, C module for finding primers.

2) Specificity Checking Step

The program filters the primers into good or bad ones.



| <i>i</i> n |  |
|------------|--|
| ific DNA   |  |
| o identify |  |
| S,         |  |
| rous other |  |

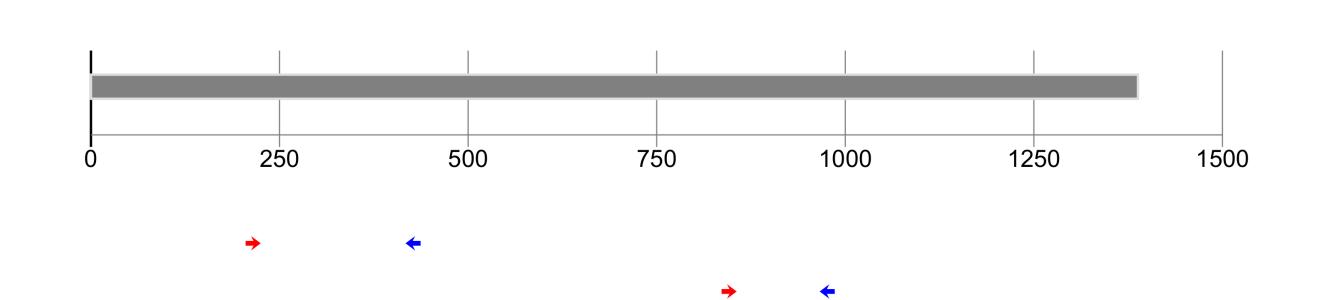
# How the tool looks

| Primer S                                                                                                                                                                            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                        |                                      |                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------|
| Basic Sett                                                                                                                                                                          | ings                                                                       |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                        |                                      |                                                                                  |
| Additional                                                                                                                                                                          | Parameters                                                                 |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                        |                                      |                                                                                  |
| Specificity                                                                                                                                                                         | Checking                                                                   |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                        |                                      |                                                                                  |
| Submit                                                                                                                                                                              | Reset                                                                      | Export Settings                                                                                                                                                                                                                                                                                                                                                            | Import Settin                                                                                                                                                                                                          | gs                                   |                                                                                  |
| Result                                                                                                                                                                              |                                                                            |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                        |                                      |                                                                                  |
|                                                                                                                                                                                     |                                                                            | Figur                                                                                                                                                                                                                                                                                                                                                                      | <b>e 1:</b> Ove                                                                                                                                                                                                        | rview                                |                                                                                  |
|                                                                                                                                                                                     |                                                                            | iigui                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                        |                                      |                                                                                  |
| Basic Setting                                                                                                                                                                       | gs                                                                         |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                        |                                      |                                                                                  |
| Paste sequence to                                                                                                                                                                   | emplate here                                                               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                        |                                      |                                                                                  |
| CGCGACGCT                                                                                                                                                                           | TCGGCCTCTG                                                                 | GCTCCACCGCCTGC                                                                                                                                                                                                                                                                                                                                                             | CTCCCTGGCTCT                                                                                                                                                                                                           | GTGACCGT                             | CTCCGCCCCTCGCCGT<br>GACGAGACACGTCGCC                                             |
| CTCCGTGGC                                                                                                                                                                           | GGTGCTAGGG                                                                 | ATTGTGAGGTAAAG                                                                                                                                                                                                                                                                                                                                                             | CGTGATGGCAGC                                                                                                                                                                                                           | GCCACCGG                             |                                                                                  |
| GATGGATCA                                                                                                                                                                           | TTCACCACTAG                                                                | CTTTATTACCACTA                                                                                                                                                                                                                                                                                                                                                             | TTGGCATTGACT                                                                                                                                                                                                           | TCAAGATAA                            | GTCTCCTGTTACGGTTC<br>GGACTGTCGAGTTGGA<br>CCATTACTACTCCTTAC                       |
| AGGGGAGCA                                                                                                                                                                           | ATGGGCATCT                                                                 | <b>IGCTTGTGTACGAT</b>                                                                                                                                                                                                                                                                                                                                                      | GTCACAGACGAG                                                                                                                                                                                                           | TCATCTTTC                            | CGATTACTACTGCTTA(<br>AATAACATAAGAAATT<br>ATAAAGCTGATATGGAT                       |
| AGCAAACGG                                                                                                                                                                           | GCTGTGCCCA                                                                 | CTTCGAAGGGGCAA                                                                                                                                                                                                                                                                                                                                                             | AGCTCTCGCTGAC                                                                                                                                                                                                          | CGAATACGG                            | GATAAAGCTGATATGGAT<br>GATAAAGTTTTTTGAA<br>ATCAAACAGAGAGACTTT(                    |
|                                                                                                                                                                                     |                                                                            | GATCGAACTATCAA                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                      |                                                                                  |
| GCAGAATTC                                                                                                                                                                           | AGCTTGCTGTG                                                                | GCTCCTGAGCACT                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                        |                                      | GTTCTCGCGCATGTAAT                                                                |
| ATCGTTTCAT                                                                                                                                                                          | TTCTTTGCCAG                                                                | CGACTCTCTCCTTG                                                                                                                                                                                                                                                                                                                                                             | TGTCACCGCAAG<br>TGCTTCTTGAGC                                                                                                                                                                                           | ATAGTGGCG<br>TATCGCAGT               |                                                                                  |
| ATCGTTTCA<br>GGGTGTTAA                                                                                                                                                              | TTCTTTGCCAG<br>CTGTTAAGTCA                                                 | CGACTCTCTCCTTG                                                                                                                                                                                                                                                                                                                                                             | TGTCACCGCAAG<br>TGCTTCTTGAGC                                                                                                                                                                                           | ATAGTGGCG<br>TATCGCAGT               | GTTCTCGCGCATGTAAT                                                                |
| ATCGTTTCAT                                                                                                                                                                          | TTCTTTGCCAG<br>CTGTTAAGTCA                                                 | CGACTCTCTCCTTG                                                                                                                                                                                                                                                                                                                                                             | TGTCACCGCAAG<br>TGCTTCTTGAGC                                                                                                                                                                                           | ATAGTGGCG<br>TATCGCAGT               | GTTCTCGCGCATGTAAT<br>TGCTGTGGGCCTGGAC/<br>CATGGTAAGGCGTGCA                       |
| ATCGTTTCA<br>GGGTGTTAA                                                                                                                                                              | TTCTTTGCCAG<br>CTGTTAAGTCA                                                 | CGACTCTCTCCTTG                                                                                                                                                                                                                                                                                                                                                             | TGTCACCGCAAG<br>TGCTTCTTGAGC                                                                                                                                                                                           | ATAGTGGCG<br>TATCGCAGT               | GTTCTCGCGCATGTAAT<br>TGCTGTGGGCCTGGAC/<br>CATGGTAAGGCGTGCA                       |
| ATCGTTTCA<br>GGGTGTTAA<br>Pick Left Prir                                                                                                                                            | TTCTTTGCCAG<br>CTGTTAAGTCA<br>mer 🔽                                        | CGACTCTCTCCTTG                                                                                                                                                                                                                                                                                                                                                             | TGTCACCGCAAG<br>TGCTTCTTGAGC                                                                                                                                                                                           | ATAGTGGCG<br>TATCGCAGT               | GTTCTCGCGCATGTAAT<br>TGCTGTGGGCCTGGAC/<br>CATGGTAAGGCGTGCA                       |
| ATCGTTTCA<br>GGGTGTTAA                                                                                                                                                              | TTCTTTGCCAG<br>CTGTTAAGTCA<br>mer 🔽                                        | CGACTCTCTCCTTG<br>GAGCAGTTACTTG                                                                                                                                                                                                                                                                                                                                            | TGTCACCGCAAG<br>TGCTTCTTGAGC                                                                                                                                                                                           | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCC | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCA<br>GGGTGTTAA<br>Pick Left Prir                                                                                                                                            | TTCTTTGCCAG<br>CTGTTAAGTCA<br>mer 🔽                                        | CGACTCTCTCCTTG<br>GAGCAGTTACTTG                                                                                                                                                                                                                                                                                                                                            | TGTCACCGCAAG<br>TGCTTCTTGAGC<br>CTGTATTGTGGGA                                                                                                                                                                          | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCC | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCA<br>GGGTGTTAA<br>Pick Left Prir                                                                                                                                            | TTCTTTGCCAG<br>CTGTTAAGTCA<br>mer                                          | CGACTCTCTCCTTG<br>GAGCAGTTACTTG                                                                                                                                                                                                                                                                                                                                            | TGTCACCGCAAG<br>TGCTTCTTGAGC<br>CTGTATTGTGGGA                                                                                                                                                                          | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCC | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCA<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal                                                                                                                           | TTCTTTGCCAG<br>CTGTTAAGTCA<br>mer                                          | CGACTCTCTCCTTG<br>GAGCAGTTACTTG                                                                                                                                                                                                                                                                                                                                            | TGTCACCGCAAG<br>TGCTTCTTGAGC<br>CTGTATTGTGGGA                                                                                                                                                                          | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCC | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCA<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal                                                                                                                           | TTCTTTGCCAG<br>CTGTTAAGTCA<br>mer                                          | CGACTCTCTCCTTG<br>GAGCAGTTACTTG                                                                                                                                                                                                                                                                                                                                            | TGTCACCGCAAG<br>TGCTTCTTGAGC<br>CTGTATTGTGGGA                                                                                                                                                                          | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCC | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCA<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal                                                                                                                           | TTCTTTGCCAG<br>CTGTTAAGTCA<br>ner                                          |                                                                                                                                                                                                                                                                                                                                                                            | TGTCACCGCAAG<br>TGCTTCTTGAGC<br>CTGTATTGTGGGA<br>e this internal oligo                                                                                                                                                 | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCC | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCAT<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal                                                                                                                          | TTCTTTGCCAG<br>CTGTTAAGTCA<br>ner                                          | CGACTCTCTCCTTG<br>GAGCAGTTACTTG                                                                                                                                                                                                                                                                                                                                            | TGTCACCGCAAG<br>TGCTTCTTGAGC<br>CTGTATTGTGGGA<br>e this internal oligo                                                                                                                                                 | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCC | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCAT<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal<br>Pick Left Prir<br>Product Size                                                                                        | rtctttgccAG<br>ctgttAAgtcA<br>mer<br>Oligo<br>mer<br>?                     | CGACTCTCTCCTTG<br>GAGCAGTTACTTG<br>Use<br>Min<br>100                                                                                                                                                                                                                                                                                                                       | e this internal olige                                                                                                                                                                                                  |                                      | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCAT<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal<br>Pick Left Prir<br>Product Size<br>Targets <b>(</b>                                                                    | rtctttgccAG<br>ctgttAAgtcA<br>mer<br>Oligo<br>mer<br>?                     | CGACTCTCTCCTTG<br>GAGCAGTTACTTG<br>Use<br>Min<br>100<br>                                                                                                                                                                                                                                                                                                                   | TGTCACCGCAAG<br>TGCTTCTTGAGC<br>CTGTATTGTGGGA<br>e this internal oligo                                                                                                                                                 | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCO | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCAT<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal<br>Pick Left Prir<br>Product Size<br>Targets <b>(</b>                                                                    | rtctttgccAG<br>ctgttAAgtcA<br>mer<br>Oligo<br>mer<br>?                     | CGACTCTCTCCTTG<br>GAGCAGTTACTTG<br>Use<br>Min<br>100<br><sta<br>with<br/><sta< td=""><td>TGTCACCGCAAG<br/>TGCTTCTTGAGC<br/>CTGTATTGTGGGA<br/>e this internal oligo<br/>e this internal oligo<br/>Max<br/>0</td><td>ATAGTGGCG<br/>TATCGCAGT<br/>AACTCTACCO</td><td>GTTCTCGCGCATGTAAT<br/>TGCTGTGGCCTGGAC,<br/>CATGGTAAGGCGTGCA<br/>Length: 1388, GC Ca</td></sta<></sta<br> | TGTCACCGCAAG<br>TGCTTCTTGAGC<br>CTGTATTGTGGGA<br>e this internal oligo<br>e this internal oligo<br>Max<br>0                                                                                                            | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCO | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCAT<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal<br>Pick Left Prir<br>Product Size<br>Targets <b>?</b><br>Excluded Reg                                                    | rtctttgccAG<br>ctgttAAgtcA<br>mer<br>Oligo<br>mer<br>?<br>gions ?          | CGACTCTCTCCTTG<br>GAGCAGTTACTTG<br>Use<br>Min<br>100<br><sta<br>with</sta<br>                                                                                                                                                                                                                                                                                              | Max<br>Max<br>Max<br>Max<br>Max<br>Max<br>Max<br>Max                                                                                                                                                                   | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCO | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCAT<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal<br>Pick Left Prir<br>Product Size<br>Targets <b>?</b><br>Excluded Reg                                                    | rtctttgccAG<br>ctgttAAgtcA<br>mer<br>Oligo<br>mer<br>?                     | CGACTCTCTCCTTG<br>GAGCAGTTACTTG<br>Use<br>Min<br>100<br><sta<br>with<br/><sta< td=""><td>Max<br/>Max<br/>Max<br/>Max<br/>Max<br/>Max<br/>Max<br/>Max</td><td>ATAGTGGCG<br/>TATCGCAGT<br/>AACTCTACCO</td><td>GTTCTCGCGCATGTAAT<br/>TGCTGTGGCCTGGAC,<br/>CATGGTAAGGCGTGCA<br/>Length: 1388, GC Ca</td></sta<></sta<br>                                                       | Max<br>Max<br>Max<br>Max<br>Max<br>Max<br>Max<br>Max                                                                                                                                                                   | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCO | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCAT<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal<br>Pick Left Prir<br>Product Size<br>Targets <b>?</b><br>Excluded Reg                                                    | rtctttgccAG<br>ctgttAAgtcA<br>mer<br>Oligo<br>mer<br>gions<br>ng Temp (Tm) | CGACTCTCTCCTTG<br>GAGCAGTTACTTG<br>Use<br>Min<br>100<br><sta<br>with</sta<br>                                                                                                                                                                                                                                                                                              | Max<br>Max<br>Max<br>Max<br>Max<br>Max<br>Max<br>Max                                                                                                                                                                   | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCO | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCAT<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal<br>Pick Left Prir<br>Product Size<br>Targets <b>?</b><br>Excluded Reg<br>Primer Meltin<br>Max Tm Diffe                   | rtctttgccAG<br>ctgttAAGtcA<br>mer<br>Oligo<br>mer                          | CGACTCTCTCCTTG<br>GAGCAGTTACTTG<br>Min<br>100<br><sta<br>with<br/><sta<br>with<br/><sta<br>Min<br/>3</sta<br></sta<br></sta<br>                                                                                                                                                                                                                                            | TGTCACCGCAAG<br>TGCTTCTTGAGC<br>CTGTATTGTGGGA<br>e this internal olige<br>b this internal olige<br>Max<br>0 300<br>rt>- <length> e.g. 37-21 (<br/>0 in sequence template<br/>() in sequence template<br/>60 0</length> | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCO | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |
| ATCGTTTCAT<br>GGGTGTTAA<br>Pick Left Prir<br>Pick Internal<br>Pick Left Prir<br>Product Size<br>Targets <b>?</b><br>Excluded Reg<br>Primer Meltin<br>Max Tm Diffe<br>Salt Correctio | rtctttgccAG<br>ctgttAAgtcA<br>mer<br>Oligo<br>mer                          | CGACTCTCTCCTTG<br>GAGCAGTTACTTG<br>Use<br>Min<br>100<br><sta<br>with<br/><sta<br>With<br/>3<br/>Sau</sta<br></sta<br>                                                                                                                                                                                                                                                      | Max<br>Max<br>Max<br>Max<br>Max<br>Max<br>Max<br>Max                                                                                                                                                                   | ATAGTGGCG<br>TATCGCAGT<br>AACTCTACCO | GTTCTCGCGCATGTAAT<br>TGCTGTGGCCTGGAC,<br>CATGGTAAGGCGTGCA<br>Length: 1388, GC Ca |

There are 4 main parts in the tool.

- Basic settings
- 2. Additional Parameters
- 3. Specificity Checking
- 4. Result

**Basic Settings and Additional** Parameters are settings for primer3. We picked up most commonly used parameters in the Basic Settings and minor options in Additional Parameters. The parameters for primer3 will have the default value from primer3. Specificity checking is for filtering primers more accurately.

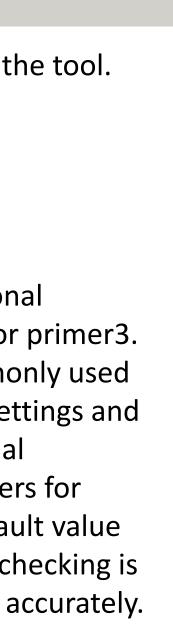

| Additional Parameters                   |    |     |  |  |
|-----------------------------------------|----|-----|--|--|
| Pick one                                |    | Add |  |  |
| PRIMER_INTERNAL_MIN_TM (float)          | 57 | _   |  |  |
| PRIMER_MAX_LIBRARY_MISPRIMING (decimal) | 12 | _   |  |  |
| PRIMER_SALT_CORRECTIONS (int)           | 1  | _   |  |  |
| Figure 3: Additional Parameters         |    |     |  |  |
|                                         |    |     |  |  |

| Specificity Checking         |                                         |
|------------------------------|-----------------------------------------|
| Use Specificity Checking     | g                                       |
| Genome:                      | Maize B73 /                             |
| Primer must have at least 2  | total mismatches to unintended targe    |
| mismatches within the last 5 | _ bps at the 3' end. Ignore targets tha |
| primer.                      |                                         |
| Max target size:             | 3000                                    |
|                              |                                         |

Figure 4: Specificity Checking

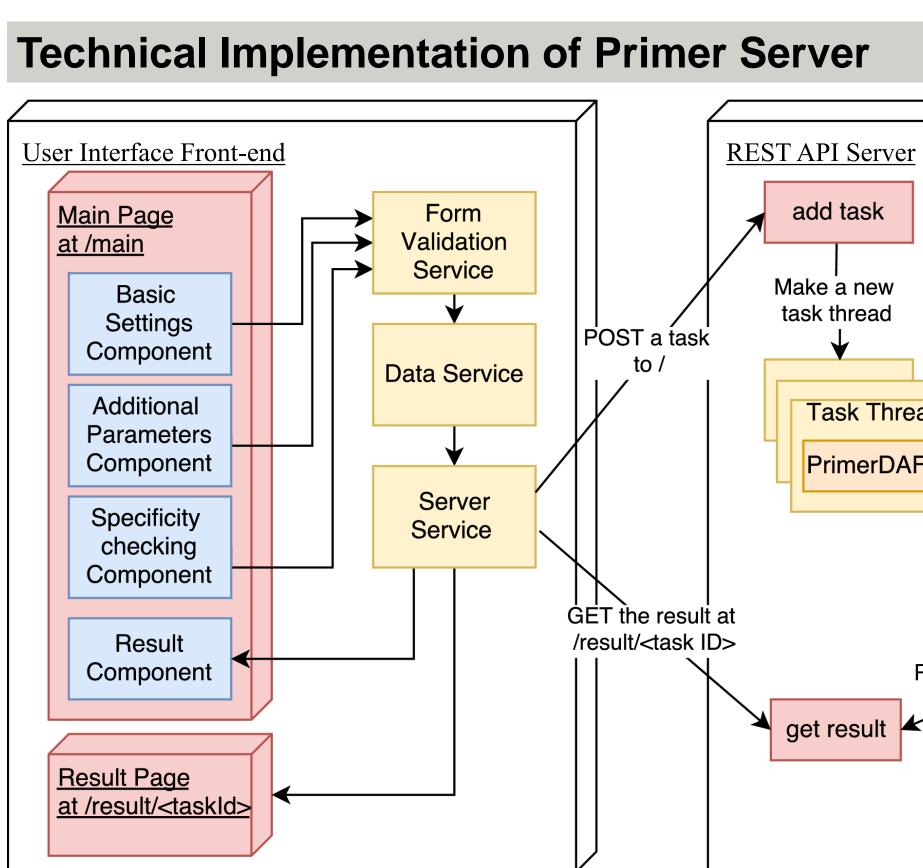
### Result

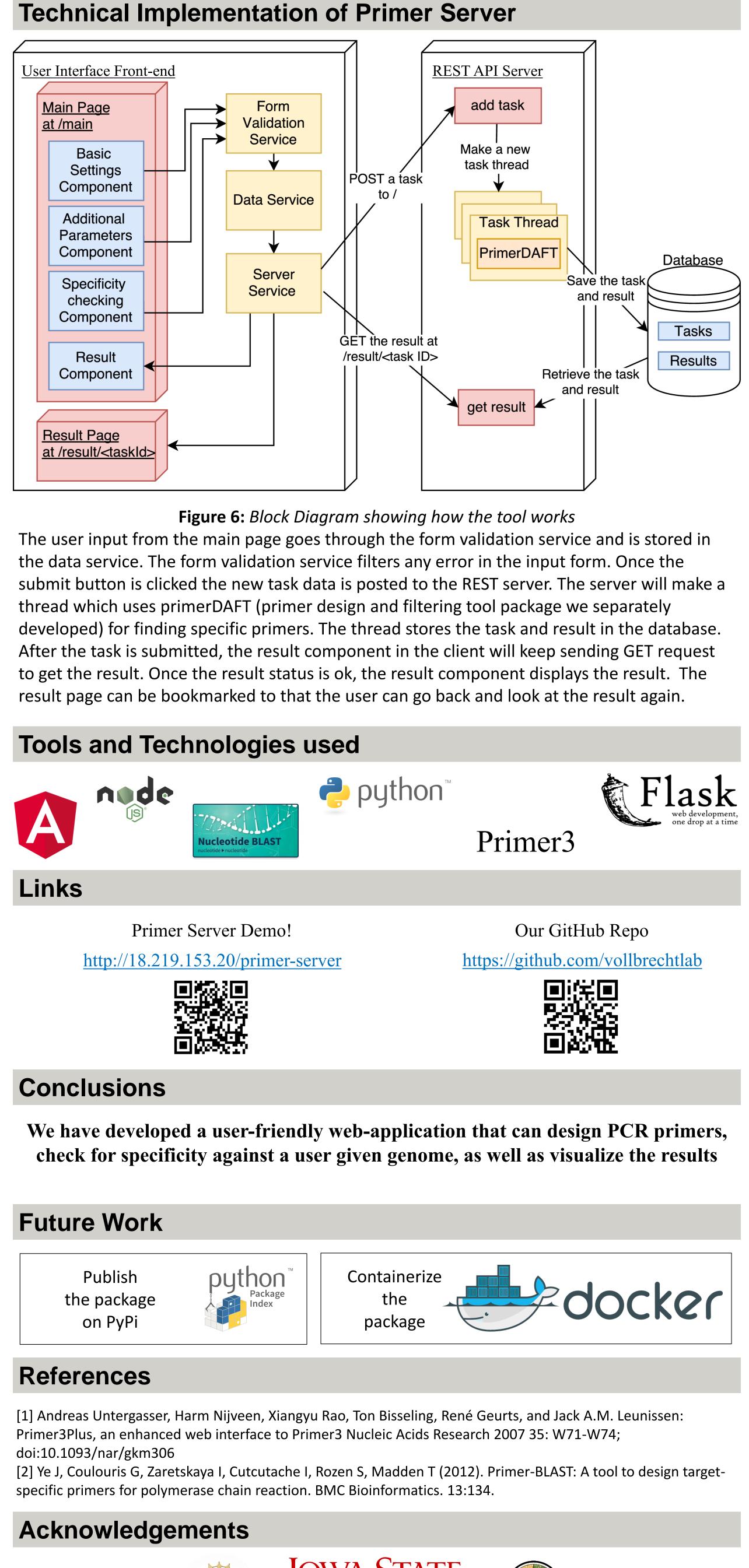
The result was successfully calculated. Bookmark this link




# **Primer Pair 1**

| Any TH      | 0 |
|-------------|---|
| End TH      | 0 |
| Targets     | 1 |
| Off Targets | 0 |
|             |   |


### Figure 5: Result Page The result page visualizes the primers by red and blue arrows. It also shows the details of each primer pair at the end. The User can see the result again by visiting the bookmarked link.


|               | Left Primer          | Right Primer         |
|---------------|----------------------|----------------------|
| END_STABILITY | 4.94                 | 3.51                 |
| GC_PERCENT    | 60                   | 55                   |
| HAIRPIN_TH    | 0                    | 29.926141167269407   |
| LENGTH        | 20                   | 20                   |
| PENALTY       | 0.03322786310553738  | 0.03732564918669823  |
| SELF_ANY_TH   | 10.374750374848247   | 0                    |
| SELF_END_TH   | 0                    | 0                    |
| SEQUENCE      | GATCTGATCTGGCTCCGTGG | TGCCATCCAACTCGACAGTC |
| START         | 205                  | 437                  |
| ТМ            | 59.96677213689446    | 60.0373256491867     |



AGPv4 ets. Including at least 2

t have 6 or more mismatches to the











